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Abstract
We introduce a novel method for adapting dif-
fusion models under differential privacy (DP)
constraints, enabling privacy-preserving style
and content transfer without fine-tuning model
weights. Traditional approaches to private adap-
tation, such as DP-SGD, incur significant compu-
tational and memory overhead when applied to
large, complex models. In addition, when adapt-
ing to small-scale specialized datasets, DP-SGD
incurs large amount of noise that significantly de-
grades the performance. Our approach instead
leverages an embedding-based technique derived
from Textual Inversion (TI) and adapted with dif-
ferentially private mechanisms. We apply TI to
Stable Diffusion for style adaptation using two
private datasets: a collection of artworks by a
single artist and pictograms from the Paris 2024
Olympics. Experimental results show that the TI-
based adaptation achieves superior fidelity in style
transfer, even under strong privacy guarantees.

1. Introduction
In recent years, diffusion models (Ho et al., 2020; Song et al.,
2021b), particularly latent diffusion models (Rombach et al.,
2022), have spearheaded high quality text-to-image gener-
ation, and have been widely adopted by researchers and
the general public alike. Trained on massive datasets like
LAION-5B (Schuhmann et al., 2022), these models have de-
veloped a broad understanding of visual concepts, enabling
new creative and practical applications. Notably, tools such
as Stable Diffusion (Rombach et al., 2022; Podell et al.,
2023) have been made readily accessible for general use.
Building on this foundation, efficient adaptation methods
such as parameter efficient fine-tuning (PEFT) methods (Hu
et al., 2022; von Platen et al., 2022; Ruiz et al., 2023),
guidance based approaches (Ho & Salimans, 2021; Kim
et al., 2022; Bansal et al., 2024), and pseudo-word genera-
tion (Gal et al., 2023) enable users to leverage this extensive
pretraining for customizing models that can specialize on
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downstream tasks with smaller datasets.

The rapid adoption of diffusion models has raised significant
privacy and legal concerns. These models are vulnerable to
privacy attacks, such as membership inference (Duan et al.,
2023), where attackers determine if a specific data point was
used for training, and data extraction (Carlini et al., 2023),
which enables reconstruction of training data. This risk is
amplified during fine-tuning on smaller, domain-specific
datasets, where each record has a greater impact. Addi-
tionally, reliance on large datasets scraped without consent
raises copyright concerns (Vyas et al., 2023), as diffusion
models can reproduce original artworks without credit or
compensation. These issues highlight the urgent need for
privacy-preserving technologies and clearer ethical and legal
guidelines for generative models.

Differential privacy (DP) (Dwork et al., 2006; Dwork, 2006)
is a widely adopted approach to addressing these challenges,
where controlled noise is added during training or inference
to prevent information leakage from individual data points
while still enabling the model to learn effectively from the
overall dataset. One standard approach for ensuring DP in
deep learning is Differentially Private Stochastic Gradient
Descent (DP-SGD) (Abadi et al., 2016), which modifies
traditional SGD by adding noise to clipped gradients.

However, applying DP-SGD to train diffusion models poses
several challenges. It introduces significant computational
and memory overhead due to per-sample gradient clipping
(Hoory et al., 2021), which is essential for bounding gra-
dient sensitivity (Dwork et al., 2006; Abadi et al., 2016).
DP-SGD is also incompatible with batch-wise operations
like batch normalization, as these link samples and hinder
sensitivity analysis. Furthermore, training large models with
DP-SGD often leads to substantial performance degrada-
tion, particularly under realistic privacy budgets since the
required noise scales with the gradient norm. Consequently,
existing diffusion models trained with DP-SGD are limited
to relatively small-scale images. (Dockhorn et al., 2023;
Ghalebikesabi et al., 2023).

As a result, recent research has focused on privacy-
preserving strategies for adapting diffusion models without
the need for full DP-SGD training. One approach adapts
large, publicly pre-trained models to new domains under DP
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Figure 1. Overview of DPAgg-TI. We first apply Textual Inversion to extract embeddings for each image in the private dataset. These
embeddings are then aggregated with differentially private mechansim, incorporating subsampling to produce a private embedding u⋆.
Finally, images are generated using the corresponding token <S⋆>.

constraints, leveraging their representational strengths while
reducing computational and memory costs (Ghalebikesabi
et al., 2023). Similarly, PEFT methods like DP-LoRA (Yu
et al., 2022) fine-tune a small subset of parameters, enabling
efficient adaptation with lower privacy costs. Methods like
DP-RDM (Lebensold et al., 2024) avoid direct model up-
dates by using retrieval mechanisms that condition image
generation on private data retrieved during inference. How-
ever, these alternate approaches often fail to capture the
detail of style, underscoring the challenges of balancing
privacy, efficiency, and generative performance.

Independent of privacy concerns, Textual Inversion (TI) (Gal
et al., 2023) provides an effective method for adapting diffu-
sion models to specific styles or content without modifying
the model. Instead, TI learns an external embedding vec-
tor that captures the style or content of a target image set,
which is then incorporated into text prompts to guide the
model’s outputs. A key advantage of TI is its ability to com-
press a style into a compact vector, reducing computational
and memory demands while simplifying the application of
privacy-preserving mechanisms, as privacy constraints can
be applied directly to embeddings rather than the full model.
Additionally, since TI avoids direct model optimization, it
remains efficient and compatible with DP constraints on
smaller datasets.

In this work, we propose a novel privacy-preserving adap-
tation method for smaller datasets, leveraging TI to avoid
the extensive model updates required by DP-SGD or DP-
PEFT approaches. Standard TI inherently compresses the
target dataset into a single, low-dimensional vector, provid-
ing some obfuscation benefits, but it does not offer formal
privacy guarantees. To address this limitation, we introduce
a private variant of TI, called Differentially Private Aggre-
gation via Textual Inversion (DPAgg-TI) and summarize

it in Figure 1. Our method decouples interactions among
samples by learning a separate embedding for each target
image, which are then aggregated into a noisy centroid. This
approach ensures efficient and secure adaptation to private
datasets.

Our experiments demonstrate the effectiveness of DPAgg-
TI, showing that TI remains robust in preserving stylistic fi-
delity even under privacy constraints. Applying our method
to a private artwork collection by @eveismyname and
Paris 2024 Olympics pictograms (Paris 2024), we show
that DPAgg-TI captures nuanced stylistic elements while
ensuring privacy. We observe a trade-off between privacy
(controlled by DP parameter ε) and image quality: lower
ε reduces fidelity but maintains the target style under mod-
erate noise. Subsampling further amplifies privacy by re-
ducing sensitivity to individual data points, mitigating noise
impact on image quality. This framework enables privacy-
preserving adaptation of diffusion models to new styles and
domains while protecting sensitive data.

Our contributions can be summarized as follows:

• We propose DPAgg-TI that ensures privacy by learn-
ing separate embeddings for individual images and
aggregating them into a noisy centroid.

• Our approach enables style adaptation without exten-
sive model updates, reducing computational overhead
while preserving privacy.

• We analyze the trade-off between privacy and image
quality, showing that moderate noise maintains stylistic
fidelity while protecting sensitive data.

• We validate our method on diverse datasets, demon-
strating its effectiveness in capturing stylistic elements
under privacy constraints.
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2. Preliminaries and Related Work
2.1. Diffusion Models

Diffusion models (Ho et al., 2020; Song et al., 2021b;a;
Rombach et al., 2022) leverage an iterative denoising pro-
cess to generate high-quality images that align with a given
conditional input from random noise. In text-to-image gener-
ation, this conditional input is based on a textual description
(a prompt) that guides the model in shaping the image to
reflect the content and style specified by the text. To con-
vert the text prompt into a suitable conditional format, it is
first broken down into discrete tokens, each representing a
word or sub-word unit. These tokens are then converted into
a sequence of embedding vectors vi that encapsulate the
meaning of each token within the model’s semantic space.
Next, these embeddings pass through a transformer text
encoder, such as CLIP (Radford et al., 2021), outputting
a single text-conditional vector y that serves as the condi-
tioning input. This vector y is then incorporated at each
denoising step, guiding the model to align the output image
with the specific details outlined in the prompt.

The image generation process, also known as the reverse dif-
fusion process, comprises of T discrete timesteps and starts
with pure Gaussian noise xT . At each decreasing timestep t,
the denoising model, which often utilizes a U-Net structure
with cross-attention layers, takes a noisy image xt and text
conditioning y as inputs and predicts the noise component
ϵθ(xt, y, t), where θ denotes the denoising model’s param-
eters. The predicted noise is then used to make a reverse
diffusion step from xt to xt−1, iteratively refining the noisy
image closer to a coherent output x0 that aligns with the
text conditional y.

The objective function for a text-conditioned diffusion
model, given both the noisy image xt and the text condi-
tioning y, is typically a mean squared error (MSE) between
the true noise ϵ and the predicted noise ϵθ(xt, y, t). The
denoising model is therefore trained over the following opti-
mization problem:

θ∗ = argmin
θ

Ex,ϵ∼N (0,I),t∼[T ][∥ϵ− ϵθ(xt, y, t)∥2]. (1)

Textual Inversion. Textual Inversion (TI) (Gal et al.,
2023) is an adaptation technique that enables personaliza-
tion using a small dataset of typically 3-5 images. This
approach essentially learns a new token that encapsulates
the semantic meaning of the training images, allowing the
model to associate specific visual features with a custom
token.

To achieve this, TI trains a new token embedding, denoted
as u, representing a placeholder token, denoted as S. Dur-
ing training, images are conditioned on phrases such as
“A photo of S” or “A painting in the style of S”. However,

unlike the fixed embeddings of typical tokens vi, u is a learn-
able parameter. Let yu denote the text conditioning vector
resulting from a prompt containing the token S. Through
gradient descent, TI minimizes the diffusion model loss
given in (1) with respect to u, while keeping the diffusion
model parameters θ fixed, iteratively refining this embed-
ding to capture the unique characteristics of the training
images. The resulting optimal embedding u∗ is formalized
as follows:

u∗ = argmin
u

Ex,ϵ∼N (0,I),t∼[T ][∥ϵ− ϵθ(xt, yu, t)∥2]. (2)

Hence, u∗ represents an optimized placeholder token S∗,
which can employed in prompts such as “A photo of S∗
floating in space” or “A drawing of a capybara in the style
of S∗”, enabling the generation of personalized images that
reflect the learned visual characteristics.

2.2. Differential Privacy

In this work, we adopt differential privacy (DP) (Dwork
et al., 2006; Dwork, 2006) as our privacy framework. Over
the past decade, DP has become the gold standard for pri-
vacy protection in both research and industry. It measures
the stability of a randomized algorithm with respect to
changes in an input instance, thereby quantifying the extent
to which an adversary can infer the existence of a specific
input based on the algorithm’s output.

Definition 2.1 ((Approximate) Differential Privacy). For
ε, δ ≥ 0, a randomized mechanism M : Xn → Y satisfies
(ε, δ)-DP if for all neighboring datasets D,D′ ∈ Xn which
differ in a single record (i.e., ∥D − D′∥H ≤ 1 where ∥·∥H
is the Hamming distance) and all measurable S in the range
of M, we have that

Pr (M(D) ∈ S) ≤ eε Pr (M(D′) ∈ S) + δ.

When δ = 0, we say M satisfies ε-pure DP or (ε-DP).

To achieve DP, the Gaussian mechanism is often applied
(Dwork et al., 2014; Balle & Wang, 2018), adding Gaus-
sian noise scaled by the sensitivity of the function f and
privacy parameters ε and δ. Specifically, noise with stan-

dard deviation σ =
∆f

√
2 ln(1.25/δ)

ε is added to the output1

(Balle & Wang, 2018), where ∆f represents ℓ2-sensitivity
of the target function f(·). When the context is clear,
we may omit the subscript f . This mechanism enables a
smooth privacy-utility tradeoff and is widely used in privacy-
preserving machine learning, including in DP-SGD (Abadi
et al., 2016), which applies Gaussian noise during model
updates to achieve DP.

1In practice, we use numerical privacy accountant such as
(Balle & Wang, 2018; Mironov, 2017) to calibrate the noise.
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Privacy Amplification by Subsampling. Subsampling
is a standard technique in DP, where a full dataset of size
n is first subsampled to m records without replacement
(typically with m ≪ n) before the privatization mechanism
(such as the Gaussian mechanism) is applied. Specifically,
if a mechanism provides (ε, δ)-DP on a dataset of size m,
it achieves (ε′, δ′)-DP on the subsampled dataset, where
δ′ = m

n δ and

ε′ = log
(
1 +

m

n
(eε − 1)

)
= O

(m
n
ε
)
. (3)

This result is well-known (Steinke (2022, Theorem 29)),
with tighter amplification bounds available for Gaussian
mechanisms (Mironov, 2017).

2.3. Differentially Private Adaptation of Diffusion
Models

Recent advancements in applying DP to diffusion models
have aimed to balance privacy preservation with the high
utility of generative outputs. Dockhorn et al. (Dockhorn
et al., 2023) proposed a Differentially Private Diffusion
Model (DPDM) that enables privacy-preserving generation
of realistic samples, setting a foundational approach for
adapting diffusion processes using DP-SGD. Another com-
mon strategy involves training a model on a large public
dataset, followed by differentially private fine-tuning on a
private dataset, as explored by Ghalebikesabi et al. (2023).
While effective in certain contexts, this approach raises
privacy concerns, particularly around risks of information
leakage during the fine-tuning phase (Tramèr et al., 2024).

In response to these limitations, various adaptation tech-
niques have emerged. Although not specific to diffusion
models, some methods focus on training models on syn-
thetic data followed by DP-constrained fine-tuning, as in
the VIP approach (Yu et al., 2024), which demonstrates
the feasibility of applying DP in later adaptation stages.
Other approaches explore differentially private learning of
feature representations (Sander et al., 2024), aiming to dis-
till private information into a generalized embedding space
while maintaining DP guarantees. Although these adapta-
tions are not yet implemented for diffusion models, they lay
essential groundwork for developing secure and efficient
privacy-preserving generative models.

3. Differentially Private Adaptation via
Textual Inversion

TI is inherently parameter-efficient and offers certain privacy
benefits, as information from an entire dataset of images is
compressed into a single token embedding vector. This com-
pression limits the model’s capacity to memorize specific
images, making data extraction attacks difficult. However,
this privacy is merely heuristic and yet to be proven, so TI

may still be vulnerable to privacy attacks such as member-
ship inference. A similar adaptation technique with privacy
guarantees may therefore be desirable.

Let x(1), . . . , x(n) represent a target dataset of images
whose characteristics we wish to privately adapt our im-
age generation towards. Instead of training a single token
embedding on the entire dataset as in regular TI, we train
a separate embedding u(i) on each x(i) to obtain a set of
embeddings u(1), . . . , u(n), as illustrated in Figure 1. We
can formalize the encoding process as follows:

u(i) = argmin
u

Eϵ∼N (0,I),t[∥ϵ− ϵθ(x
(i)
t , yu, t)∥2]. (4)

Then, we can aggregate the embeddings u(1), . . . , u(n) by
calculating the centroid. The purpose of this aggregation
is to limit the sensitivity of the final output to each x(i).
In order to provide DP guanrantees, we also add isotropic
Gaussian noise to the centroid. We can therefore define the
resulting embedding vector u∗ as follows:

u∗ =
1

n

n∑
i=1

u(i) +N (0, σ2I), (5)

where the minimum σ required to provide (ε, δ)-DP is given
by the following expression based on Balle & Wang (2018,
Theorem 1):

σ =
∆

n
·
√
2 ln(1.25/δ)

ε
. (6)

In the context of our problem, ∆ = supi,j ∥u(i) − u(j)∥.
Since our embedding vectors are directional, we can nor-
malize each u(i), allowing us to set ∆ = 2.

The noisy centroid embedding u∗ can then be used to adapt
the downstream image generation process. Similar to reg-
ular TI’s u∗, we can use u∗ to represent a new placeholder
token S∗ that can be incorporated into prompts for person-
alized image generation. While u∗ may not fully solve the
TI optimization problem presented in (2), it provides prov-
able privacy guarantees, with only a minimal trade-off in
accurately representing the style of the target dataset.

To reduce the amount of noise needed to provide the same
level of DP, we employ subsampling: instead of computing
the centroid over all n embedding vectors, we randomly
sample m ≤ n embedding vectors without replacement
and compute the centroid over only the sampled vectors.
Then the standard privacy amplification by subsampling
bounds (such as (3)) can be applied. Formally, we sample
Dsub ⊆ {u(1), . . . , u(n)} where |Dsub| = m, and compute
the output embedding as follows:

u∗ =
1

m

∑
u(i)∈Dsub

u(i) +N (0, σ2I), (7)
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Figure 2. Samples of images used in our style adaptation experiments. Left: artwork by @eveismyname (n = 158). Right: Paris 2024
Olympic pictograms (n = 47), © International Olympic Committee, 2023.

where σ can be computed numerically for any target ε, δ
and subsampling rate m

n .

4. Experimental Results
4.1. Datasets

We compiled two datasets to evaluate our style adaptation
method, specifically selecting content unlikely to be recog-
nized by Stable Diffusion v1.5, our base model.

The first dataset consists of 158 artworks by the artist
@eveismyname, who has granted consent for non-
commercial use. This dataset allows us to assess whether
models can capture artistic styles without memorizing indi-
vidual works. While some of these artworks may have been
publicly accessible on social media, making incidental in-
clusion in Stable Diffusion’s pretraining possible, the artist’s
limited recognition and relatively small portfolio reduce the
likelihood that the model has internalized her unique style.
This dataset serves as a controlled test for privacy-preserving
style transfer on individual artistic collections.

The second dataset contains 47 pictograms from the Paris
2024 Olympics (Paris 2024), permitted strictly for non-
commercial editorial use (International Olympic Commit-
tee). These pictograms were officially released in February
2023, several months after the release of Stable Diffusion
v1.5, ensuring they were absent from the model’s pretrain-
ing data. This dataset allows us to assess how well our
approach adapts to newly introduced visual styles that the
base model has never encountered.

Both datasets are used to test the ability of our method
to extract and transfer stylistic elements while preserving
privacy. Representative samples are shown in Figure 2.

4.2. Style Transfer Results

Using both the @eveismyname and Paris 2024 pictograms
dataset, we trained TI (Gal et al., 2023) embeddings on
Stable Diffusion v1.5 (Rombach et al., 2022) using DPAgg-
TI. Our primary goal is to investigate how DP configurations,
specifically the privacy budget ε and subsampling size m,
affect the generated images quality and privacy resilience.
For regular TI, we utilize the default process to embed the
private dataset without any additional noise. For the DPAgg-
TI, we test multiple configurations of m and ε to analyze
the trade-off between image fidelity and privacy.

Figures 3 and 4 present generated images across two key
configurations: (1) regular TI without DP, (2) DPAgg-TI
with DP at different values of m and ε. We used the same
random seed to generate embeddings, subsample images,
and sample DP noise for ease of visual comparision be-
tween different configurations. As with common practice,
we set δ = 1/n. Since σ is undefined for ε = 0, we
demonstrate the results of ε ≈ 0, in other words, infinite
noise, by setting ε = 10−5. The purpose of this parame-
ter value is to demonstrate the image generated when u∗

contains zero information about the target dataset. Images
generated without DP closely resemble the unique stylistic
elements of the target dataset. In particular, images adapted
using @eveismyname images displayed crisp details and
nuanced color gradients characteristic of the artist’s work,

5

https://www.instagram.com/eveismyname
https://www.instagram.com/eveismyname
https://www.instagram.com/eveismyname
https://www.instagram.com/eveismyname


Differentially Private Adaptation of Diffusion Models via Noisy Aggregated Embeddings

Figure 3. Images generated by Stable Diffusion v1.5 using the prompt “A painting of Taylor Swift in the style of <@eveismyname>”,
with the embedding <@eveismyname> trained using different values of m and ε.

while those of Paris 2024 pictograms captured the logo’s
original structure. In contrast, DP configurations introduce
a discernible degradation in image quality, with lower ep-
silon values and smaller subsampling sizes resulting in more
noticeable noise and diminished stylistic fidelity.

As ε → 0, the resulting token embedding u∗ gradually loses
its semantic meaning, leading to a loss of stylistic fidelity.
In particular, yu∗ tends towards y (a conditioning vector
independent of the learnable embedding). In our results, this
manifests as a painting of Taylor Swift devoid of the artist-
specific stylistic elements, or a generic icon of a dragon
(with color, as opposed to the black and white design of the
pictograms). With this in mind, ε can be interpreted as a drift
parameter, representing the progression from the optimal
u∗ towards infinity, gradually steering the generated image
away from the target style in exchange for stronger privacy
guarantees. We also observe instances where there is a
temporary drop in prompt fidelity (e.g., m = 16, ε ∈ [0.5, 1]
in Figure 3 and intermediate ε values in Figure 4) which
restores as u∗ drifts even further from its optimal value.
We hypothesize that this is due to drifted u∗ capturing a
different meaning unrelated to the prompt, before losing
any meaning that could be interpreted by Stable Diffusion’s
text encoder, causing u∗ to be disregarded from yu∗ and the
prompt fidelity to be restored. Another possible explanation
is that the temporary drop in prompt fidelity is due to the
drift path of u∗ passing through non-linear regions within
embedding space. We leave further investigations into this
observation for future work.

Meanwhile, reducing m also reduces the sensitivity of the
generated image to ε, as evident by the observation that, on
both datasets at m = 4, (subsampling rate below 0.1) image
generation can tolerate ε as low as 0.5 without significant
changes in visual characteristics, and retaining stylistic el-
ements of the target dataset at ε as low as 0.1. This strong
boost in robustness comes at a small price of base style
capture fidelity. As observed in Figures 3 and 4, we can also
treat subsampling as an introduction of noise. Mathemati-
cally, the subsample centroid is an unbiased estimate of the
true centroid, and so the subsampling process itself defines
a distribution centered at the true centroid. However, the
amount of noise introduced by the subsampling process is
limited by the individual image embeddings, as a subsample
centroid can only stray from the true centroid as much as
the biggest outlier in the dataset.

4.3. Quantitative Evaluation

4.3.1. USER STUDY

To evaluate the utility of our approach under different DP
and subsampling configurations, we conducted a user study
with 25 participants. Each participant was shown refer-
ence images from the target dataset and asked to compare
pairs of generated images, selecting the one that better cap-
tured the style of the reference images. Images were gen-
erated using 10 prompts and adapted TI embeddings for
the @eveismyname and Paris 2024 Pictogram datasets,
resulting in 20 groups of images. Each participant evaluated
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Figure 4. Images generated by Stable Diffusion v1.5 using the prompt “Icon of a dragon in the style of <Paris 2024 Pictograms>”, with
the embedding <Paris 2024 Pictograms> trained using different values of m and ε.

two groups, one randomly selected from each dataset, with
comparisons focusing on model configurations differing by
DP noise and subsampling size.

Survey results, summarized in Table 3 in Appendix A, align
with our design goals. Participants showed no clear prefer-
ence between regular TI and DPAgg-TI, suggesting that our
privacy-preserving approach maintains perceptual quality.
As expected, both DP noise and reduced subsampling size
degraded style fidelity, consistent with the trade-offs inher-
ent in differential privacy. Preferences at ε = 1 were split,
but subsampling was generally favored, reinforcing its role
in reducing noise impact while preserving style.

4.3.2. KERNEL INCEPTION DISTANCE

The Kernel Inception Distance (KID) (Bińkowski et al.,
2018) is a metric for evaluating generative models by mea-
suring the difference between the distributions of generated
and training images in an embedding space. To compute
KID, images generated by the model and real training im-
ages are passed through an Inception network (Szegedy
et al., 2015), and their distributional differences are esti-
mated. Unlike the more commonly used Fréchet Inception
Distance (FID) (Heusel et al., 2017), KID is an unbiased
estimator of the true divergence between the learned and tar-
get distributions (Jayasumana et al., 2024), making it more
suitable for smaller datasets, as in our case.

We report KID scores for different parameters in Tables 1
and 2, showing that DPAgg-TI maintains the style transfer
fidelity of TI while ensuring differential privacy. Further

discussion of these results is provided in Appendix B.

4.4. Ablation Study

4.4.1. TEXTUAL INVERSION WITH DP-SGD

Figure 5. Comparing our approach to applying DP-SGD to reg-
ular TI using prompt “a painting of Taylor Swift in the style of
@eveismyname”.

A natural question that arises is how well our approach com-
pares to the naive method of applying DP-SGD to regular
TI training. We therefore integrated DP-SGD into the TI
codebase using the Opacus library and trained similar em-
beddings on the @eveismyname and Paris 2024 datasets.
We found that in most cases, notably the @eveismyname
dataset, the amount of noise required for DP-SGD to achieve
a reasonable value of ε for DP is so high that the resulting
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Table 1. KID scores of DPAgg-TI on @eveismyname dataset for various ε values ranging from ε = 10−5, 0.1, 0.5, 1.0, 2.0, 5.0
(including no DP) under different subsampling levels (m = 4, 8, 16, 32) as well as regular TI (ctrl).

m No DP ε = 5.0 ε = 2.0 ε = 1.0 ε = 0.5 ε = 0.1 ε ≈ 0

– 0.0444 0.0794 0.0422 0.0529 0.0690 0.1117 0.0654
32 0.0752 0.0845 0.0865 0.1167 0.0300 0.0649 0.0657
16 0.0351 0.0379 0.0430 0.0663 0.1309 0.0438 0.0658
8 0.0359 0.0366 0.0350 0.0366 0.0396 0.0530 0.0658
4 0.0245 0.0250 0.0249 0.0250 0.0258 0.0314 0.0653
ctrl 0.0318 – – – – – –

Table 2. KID scores of DPAgg-TI on Paris dataset for various ε values ranging from ε = 1e− 5, 0.1, 0.5, 1.0, 2.0, 5.0 (including no DP)
under different subsampling levels (m = 4, 8, 16, 32) as well as regular TI (ctrl).

m No DP ε = 5.0 ε = 2.0 ε = 1.0 ε = 0.5 ε = 0.1 ε ≈ 0

– 0.1146 0.1202 0.1368 0.1314 0.1389 0.1209 0.1274
32 0.1220 0.1036 0.1258 0.1377 0.1307 0.1245 0.1259
16 0.1311 0.1424 0.1170 0.1311 0.1381 0.1335 0.1278
8 0.1317 0.1307 0.1220 0.1117 0.1295 0.1313 0.1272
4 0.1141 0.1094 0.1137 0.1190 0.1194 0.1583 0.1259
ctrl 0.1388 – – – – – –

embedding contains negligible information about the train-
ing dataset. In particular, the results for ε = 1 are almost
indistinguishable to ε ≈ 0, as shown in Figure 5. We be-
lieve that this is simply because DP-SGD is not designed
to handle such small datasets in the order of 100 images.
Additional results can be found in Appendix D.

4.4.2. DIFFERENTIALLY PRIVATE ADAPTATION USING
STYLE GUIDANCE

Figure 6. Attempts of using universal guidance to generate draw-
ings of Taylor Swift and icons of the Eiffel Tower in the styles of
@eveismyname and Paris 2024 Pictograms respectively. Here,
we apply no subsampling or DP-noise.

We extend our approach to style guidance (SG) by lever-
aging the framework of Universal Guidance (Bansal et al.,
2024). Specifically, we focus on CLIP-based style guidance,
which optimizes the similarity between the CLIP embed-
dings of a target image and the generated image.

We encode each target image x(i) as u(i) via a CLIP image
encoder, then aggregate the embeddings u(1), . . . , u(n) into
u∗ using (5) or (7), depending on whether subsampling is
applied. The aggregated embedding u∗ is then incorporated
into the reverse diffusion process as a style guide. Further
implementation detailes are provided in Appendix C.

We apply our SG-based approach to both datasets. While it
provides privacy protection by obfuscating embedding de-
tails, the resulting images captured only generalized stylis-
tic elements and lack the detailed fidelity and coherence
achieved with the TI-based method. As shown in Figure 6,
this highlights the superiority of TI in balancing privacy and
high-quality image generation.

The reduced effectiveness of SG for style transfer may stem
from its sensitivity to hyperparameters such as the guidance
weight w, leading to instability. Although Bansal et al.
(2024) proposed remedies, namely backward guidance and
per-step self-recurrence, these proved insufficient for our
application. Additionally, the CLIP embeddings may not
retain enough stylistic detail after the aggregation.

5. Conclusion
We presented a differentially private adaptation method
for diffusion models using Textual Inversion for privacy-
preserving style transfer. Experiments on private artwork
and Paris 2024 pictograms showed TI preserves stylistic
fidelity and outperforms Style Guidance. Our results demon-
strate embedding-driven methods as efficient, scalable alter-
natives to DP-SGD, balancing style quality and privacy.
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Impact Statement
The use of images without owner consent raises significant
ethical concerns, particularly regarding the exploitation of
intellectual property. This work introduces a method for
visual generative models to adapt to new styles and classes
while ensuring privacy and copyright protection for data
owners. By providing a framework for privacy-preserving
adaptation, this technology aims to respect intellectual prop-
erty and address ethical challenges in generative AI. While
it does not eliminate the need for consent from data owners,
we hope that it represents a step toward balancing innova-
tion with ethical considerations in AI development. Beyond
creative applications, the proposed method has broader po-
tential uses, including synthetic data generation, privacy-
preserving personalization, and fine-tuning diffusion models
for private or domain-specific tasks.
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A. User Study
A.1. Study Design and Objective

The user study aimed to assess the utility of our approach under different DP and subsampling configurations by evaluating
the models’ ability to adapt to novel styles. The study involved 25 participants, each of whom was tasked with comparing
images generated using various configurations and selecting the one that better captured the style of reference images.

A.2. Experimental Setup

Participants were shown reference images from two datasets:

• The @eveismyname dataset of private artwork.

• The Paris 2024 Pictogram dataset.

For each dataset, 10 prompts were used to generate images, resulting in 20 groups of images (10 prompts per dataset). Each
group included images generated using the same prompt and dataset but with different model configurations. Configurations
varied in the addition of DP noise and the size of subsampling.

• Original Textual Inversion (TI)

• DPAgg-TI (ε = ∞, no DP) w/o subsampling

• DPAgg-TI (ε = 1) without subsampling

• No Adaptation

• DPAgg-TI (ε = ∞, no DP) with subsampling (m = 8)

• DPAgg-TI (ε = 1) with subsampling (m = 8)

• Style Guidance (SG)

A.3. Survey Procedure

Participants were asked to evaluate two groups of images: one randomly selected from the @eveismyname dataset and
one from the Paris 2024 Pictogram dataset. For each group:

1. Participants were shown reference images from the target dataset.

2. They were presented with pairs of images generated using different model configurations for the same prompt.

3. Participants selected the image they felt better captured the style of the reference images.

A.4. Evaluation Metrics

The study focused on assessing:

• Participants’ preference between regular TI and DPAgg-TI for style adaptation.

• The impact of DP noise and subsampling size on the perceived utility of style transfer.

A.5. Results and Analysis

The results are summarized in Table 3. Key observations include:

• Participants showed no clear preference between regular TI and DPAgg-TI in capturing styles for either dataset.
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• Both DP noise and reduced subsampling size decreased the perceived quality of style transfer.

• Preferences were split between configurations with ε = 1 with and without subsampling, though subsampling generally
had favorable outcomes.

These findings highlight the trade-off between increased DP robustness and reduced utility, suggesting that the optimal
configuration may depend on subjective preferences and specific application requirements.

Table 3. Survey Results.
regular TI No Adaptation Unsure

@eveismyname 19 4 2
Paris 2024 16 6 3

DPAgg-TI (no DP, no subsampling) No Adaptation Unsure
@eveismyname 16 9 0
Paris 2024 15 4 6

regular TI DPAgg-TI (no DP, no subsamp.) Unsure
@eveismyname 12 13 0
Paris 2024 9 10 6

regular TI DPAgg-TI (no DP, subsamp. m = 8) Unsure
@eveismyname 16 6 3
Paris 2024 7 13 5

DPAgg-TI (no DP, no subsampling) DPAgg-TI (no DP, subsamp. m = 8) Unsure
@eveismyname 18 4 3
Paris 2024 10 8 7

DPAgg-TI (ε = 1) no subsampling DPAgg-TI (ε = 1, subsamp. m = 8) Unsure
@eveismyname 14 10 1
Paris 2024 3 16 6

DPAgg-TI (no DP, no subsampling) Style Guidance Unsure
@eveismyname 16 8 1
Paris 2024 20 2 3

DPAgg-TI (ε = 1, subsamp. m = 8) Style Guidance Unsure
@eveismyname 16 8 1
Paris 2024 19 2 4

DPAgg-TI (no DP, subsamp. m = 8) DPAgg-TI (ε = 1, subsamp. m = 8) Unsure
@eveismyname 8 5 12
Paris 2024 15 4 6
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Figure 7. Samples of image sets used in our user study. Participants are asked to compare 2 images at a time.

B. Kernel Inception Distance Discussion
Our results indicate that DPAgg-TI preserves the style transfer fidelity of TI while also ensuring differential privacy. Notably,
for @eveismyname (m = 4) at low privacy budgets, we observe even lower KID values than standard TI, suggesting
enhanced style alignment. Similarly, results for the Paris 2024 dataset follow a comparable trend, with DPAgg-TI achieving
KID scores similar to TI at low privacy budgets. However, the overall KID scores for this dataset remain high within the
context of diffusion model style transfer.

Upon inspecting the generated images (Figure 8), we hypothesize that the abstract and out-of-distribution nature of the Paris
2024 images poses a challenge for the Inception network, leading to less meaningful feature embeddings. This likely inflates
the measured embedding distances between generated and reference images, resulting in higher-than-expected KID values.

For KID evaluations, we used prompts similar to those employed during TI training: “A painting/icon in the style of S∗”.
Consistent with the training image captions, these prompts do not specify a subject.

Figure 8. Sample of generated images for KID evaluations with respect to the Paris 2024 dataset.
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C. Style Guidance
C.1. Background: Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) sampling (Song et al., 2021a) uses the predicted noise ϵθ(xt, y, t) and a noise
schedule represented by an array of scalars {αt}Tt=1 to first predict a clean image x̂0, then makes a small step in the direction
of x̂0 to obtain xt−1. The reverse diffusion process for DDIM sampling can be formalized as follows:

x̂0 =
xt −

√
1− αtϵθ(xt, y, t)√

αt
(8)

xt−1 =
√
αt−1x̂0 +

√
1− αt−1ϵθ(xt, y, t). (9)

C.2. Implementation

We follow the style guidance process introduced by Bansal et al. (2024), modifying it to include differential privacy
mechanisms. Let xc denote the target style image, xt the noisy image at step t, and E(·) the CLIP image encoder. The
forward guidance process is defined as follows:

ϵ̂θ(xt, y, t) = ϵθ(xt, y, t) + w
√
1− αt∇xt

ℓcos(E(xc), E(x̂0)), (10)

where w is a guidance weight and ℓcos is the negative cosine similarity loss. For a detailed description of Universal Guidance,
including the backward guidance process and per-step self-recurrence, we refer the reader to the original paper. The reverse
diffusion step replaces ϵθ(xt, y, t) with ϵ̂θ(xt, y, t), generating an image x0 that aligns with the text conditioning y while
incorporating the stylistic characteristics of xc.

To integrate differential privacy, we encode each target image x(i) into u(i) = E(x(i)) and aggregate these embeddings into
u∗ using the centroid method. The aggregated u∗ guides the reverse diffusion process:

ϵ̂θ(xt, y, t) = ϵθ(xt, y, t) + w
√
1− αt∇xt

ℓcos(u
∗, E(x̂0)). (11)

This ensures privacy-preserving style transfer while maintaining high stylistic fidelity.

C.3. Ablation

Figure 9. Sample of paintings by Van Gogh used to generate style guidance embeddings.

Figure 10. Images generated by Stable Diffusion v1.5 with style guidance towards Van Gogh’s Saint-Paul Asylum, Saint-Rémy collection
using prompts “A painting of Taylor Swift (left) / the Eiffel Tower (center) / a tree (right)”.

To better understand the limited effectiveness of style guidance in our experiments, despite its success in (Bansal et al., 2024),
we applied our approach to a dataset of 143 paintings from Van Gogh’s Saint-Paul Asylum, Saint-Rémy collection(Innat)
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(Figure 9). Unlike the @eveismyname and Paris 2024 datasets, it is highly likely that Stable Diffusion has been trained on
these images. Additionally, Bansal et al. (2024) demonstrated successful adaptation towards the style of Van Gogh’s Starry
Night as a single reference image, making this dataset a reasonable interpolation between their successful results and our
more limited findings.

Without DP noise or subsampling, we obtained reasonable style transfer results, as shown in Figure 10. This suggests that
style guidance struggles when applied to previously unseen target styles, and that its effectiveness may depend on prior
exposure within the pre-training data.

D. Additional Style Transfer and Ablation Results

Figure 11. Images generated by Stable Diffusion v1.5 using the prompt “A painting of Taylor Swift in the style of <@eveismyname>”,
with the embedding <@eveismyname> trained using DPAgg-TI (with different subsample sizes m) and TI with DP-SGD using
different values of ε.
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Figure 12. Images generated by Stable Diffusion v1.5 using the prompt “An icon of the Eiffel Tower in the style of <Paris 2024
Pictograms>”, with the embedding <Paris 2024 Pictograms> trained using DPAgg-TI (with different subsample sizes m) and TI with
DP-SGD using different values of ε.
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Figure 13. Images generated by Stable Diffusion v1.5 using the prompt “An icon of a dragon in the style of <Paris 2024 Pictograms>”,
with the embedding <Paris 2024 Pictograms> trained using DPAgg-TI (with different subsample sizes m) and TI with DP-SGD using
different values of ε.
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