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Fig. 1. We compare our method (DPAgg-TI, top) to a baseline applying DP-
SGD to Textual Inversion (bottom), using the prompt “an icon of the Eiffel
Tower in the style of the Paris 2024 Olympic Pictograms.” While the baseline
learns a single embedding over the dataset, our method privately aggregates
per-image embeddings. At privacy budget ε = 1, DPAgg-TI preserves visual
fidelity much better than the baseline, and closely matches the non-private
output (left), demonstrating a superior privacy-utility tradeoff.

Abstract—Personalizing large-scale diffusion models poses se-
rious privacy risks, especially when adapting to small, sensitive
datasets. A common approach is to fine-tune the model using
differentially private stochastic gradient descent (DP-SGD), but
this suffers from severe utility degradation due to the high noise
needed for privacy, particularly in the small data regime. We
propose an alternative that leverages Textual Inversion (TI),
which learns an embedding vector for an image or set of images,
to enable adaptation under differential privacy (DP) constraints.
Our approach, Differentially Private Aggregation via Textual
Inversion (DPAgg-TI), adds calibrated noise to the aggregation of
per-image embeddings to ensure formal DP guarantees while pre-
serving high output fidelity. We show that DPAgg-TI outperforms
DP-SGD finetuning in both utility and robustness under the same
privacy budget, achieving results closely matching the non-private
baseline on style adaptation tasks using private artwork from a
single artist and Paris 2024 Olympic pictograms. In contrast,
DP-SGD fails to generate meaningful outputs in this setting.

I. INTRODUCTION

The rapid adoption of diffusion models [1]–[3] has raised
significant privacy and legal concerns. These models are vul-
nerable to privacy attacks, such as membership inference [4],
where attackers determine if a specific data point was used for
training, and data extraction [5], which enables reconstruction
of training data. This risk is amplified during fine-tuning on
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smaller, domain-specific datasets, where each record has a
greater impact. Additionally, reliance on large datasets scraped
without consent raises copyright concerns [6], as diffusion
models can reproduce original artworks without credit or
compensation. These issues highlight the urgent need for
privacy-preserving technologies and clearer ethical and legal
guidelines for generative models.

Differential privacy (DP) [7] is a widely adopted framework
for addressing these challenges. One standard approach for en-
suring DP in deep learning is Differentially Private Stochastic
Gradient Descent (DP-SGD) [8], which modifies traditional
SGD by adding noise to clipped gradients. However, applying
DP-SGD to train diffusion models poses several challenges.
It introduces significant computational and memory overhead
due to per-sample gradient clipping [9], which is essential
for bounding gradient sensitivity [8], [10]. DP-SGD is also
incompatible with batch-wise operations like batch normal-
ization, as these link samples and hinder sensitivity analysis.
Furthermore, training large models with DP-SGD often leads
to substantial performance degradation, particularly under re-
alistic privacy budgets since the required noise scales with the
gradient norm. Consequently, existing diffusion models trained
with DP-SGD are limited to small-scale images [11], [12].

Independent of privacy concerns, Textual Inversion (TI) [13]
effectively adapts diffusion models to specific styles or content
without modifying the model. Instead, TI learns an external
embedding vector that captures the style or content of a target
image set, which is then incorporated into text prompts to
guide the model’s outputs. A key advantage of TI is its ability
to compress a style into a compact vector, reducing com-
putational and memory demands while simplifying privacy
mechanisms, as privacy constraints can be applied directly
to embeddings rather than the full model. Additionally, since
TI avoids direct model optimization, it remains efficient and
compatible with DP constraints on smaller datasets.

In this work, we propose a novel privacy-preserving adap-
tation method for smaller datasets, leveraging TI to avoid the
extensive model updates required by DP-SGD. Standard TI
does not offer formal privacy guarantees, so we introduce a
private variant, Differentially Private Aggregation via Textual
Inversion (DPAgg-TI), summarized in Figure 2. Our method
decouples interactions among samples by learning a separate
embedding for each target image, which are then aggregated
into a noisy centroid. This approach ensures efficient and
secure adaptation to private datasets.



Fig. 2. Overview of DPAgg-TI. We first apply Textual Inversion to extract embeddings for each image in the private dataset. These embeddings are then
aggregated with differentially private mechansim, incorporating subsampling to produce a private embedding u∗

DP. Finally, images are generated using the
corresponding token S∗.

Our experiments demonstrate the effectiveness of DPAgg-
TI, showing that TI remains robust in preserving stylistic fi-
delity even under privacy constraints (Figure 1). Applying our
method to a private artwork collection by @eveismyname
and Paris 2024 Olympics pictograms [14], we show that
DPAgg-TI captures nuanced stylistic elements while ensuring
privacy. We observe a trade-off between privacy (controlled by
DP parameter ε) and image quality: lower ε reduces fidelity but
maintains the target style under moderate noise. Subsampling
further amplifies privacy by reducing sensitivity to individual
data points, mitigating noise impact on image quality. This
framework enables privacy-preserving adaptation of diffusion
models to new styles and domains while protecting sensitive
data.

Our contributions can be summarized as follows:
• We propose DPAgg-TI that ensures privacy by learning

separate embeddings for individual images and aggregat-
ing them into a noisy centroid.

• Our approach enables style adaptation without extensive
model updates, reducing computational overhead while
preserving privacy.

• We analyze the trade-off between privacy and image
quality, showing that moderate noise maintains stylistic
fidelity while protecting sensitive data.

• We validate our method on diverse datasets, demonstrat-
ing its effectiveness in capturing stylistic elements under
privacy constraints.

II. BACKGROUND AND RELATED WORK

A. Diffusion Models

Diffusion models [1]–[3], [15] leverage an iterative denois-
ing process to generate high-quality images that align with
a given conditioning input from random noise. In text-to-
image generation, this conditioning input is based on a textual
description (a prompt) that guides the model in shaping the
image to reflect the content and style specified by the text. To

convert the text prompt into a suitable conditioning format,
it is first broken down into discrete tokens, each representing
a word or sub-word unit. These tokens are then converted
into a sequence of embedding vectors vi that encapsulate the
meaning of each token within the model’s semantic space.
Next, these embeddings pass through a transformer text en-
coder, such as CLIP [16], outputting a single text-conditioning
vector y that serves as the conditioning input. This vector y
is then incorporated at each denoising step, guiding the model
to align the output image with the specific details outlined in
the prompt.

The image generation process, also known as the reverse
diffusion process, comprises of T discrete timesteps and starts
with pure Gaussian noise xT . At each decreasing timestep t,
the denoising model, which often utilizes a U-Net structure
with cross-attention layers, takes a noisy image xt and text
conditioning y as inputs and predicts the noise component
ϵθ(xt, y, t), where θ denotes the denoising model’s parameters.
The predicted noise is then used to make a reverse diffusion
step from xt to xt−1, iteratively refining the noisy image closer
to a coherent output x0 conditioned on y.

The objective function for a text-conditioned diffusion
model, given both the noisy image xt and the text conditioning
y, is typically a mean squared error between the true noise ϵ
and the predicted noise ϵθ(xt, y, t). The denoising model is
therefore trained over the optimization problem

θ∗ = argmin
θ

Ex,ϵ∼N (0,I),t∼[T ][∥ϵ− ϵθ(xt, y, t)∥2]. (1)

B. Textual Inversion

Textual Inversion (TI) [13] is an adaptation technique that
enables personalization using a small dataset of typically 3-
5 images. This approach essentially learns a new token that
encapsulates the semantic meaning of the training images,
allowing the model to associate specific visual features with a
custom token.



To achieve this, TI trains a new token embedding, denoted
as u, representing a placeholder token, denoted as S. During
training, images are conditioned on phrases such as “A photo
of S” or “A painting in the style of S”. However, unlike
the fixed embeddings of typical tokens vi, u is a learnable
parameter. Let yu denote the text conditioning vector resulting
from a prompt containing the token S. Through gradient
descent, TI minimizes the diffusion model loss with respect
to u, instead of the diffusion model parameters θ, which we
keep fixed. By doing so, we iteratively refine this embedding
to capture the unique characteristics of the training images.
The resulting optimal embedding u∗ is formalized as

u∗ = argmin
u

Ex,ϵ∼N (0,I),t∼[T ][∥ϵ− ϵθ(xt, yu, t)∥2]. (2)

Hence, u∗ represents an optimized placeholder token S∗,
which can employed in prompts such as “A photo of S∗

floating in space” or “A drawing of a capybara in the style
of S∗”, enabling the generation of personalized images that
reflect the learned visual characteristics.

C. Differential Privacy

In this work, we adopt differential privacy (DP) [7], [10]
as our privacy framework. Over the past decade, DP has
become the gold standard for privacy protection in both
research and industry. It measures the stability of a randomized
algorithm with respect to changes in an input instance, thereby
quantifying the extent to which an adversary can infer the
existence of a specific input based on the algorithm’s output.

Definition 1 ((Approximate) Differential Privacy). For ε, δ ≥
0, a randomized mechanism M : Xn → Y satisfies (ε, δ)-
DP if for all neighboring datasets D,D′ ∈ Xn which differ
in a single record (i.e., ∥D − D′∥H ≤ 1 where ∥·∥H is the
Hamming distance) and all measurable S in the range of M,
we have that

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S) + δ.

When δ = 0, we say M satisfies ε-pure DP or (ε-DP).

To achieve DP, the Gaussian mechanism is commonly
applied [17], [18], adding Gaussian noise scaled by the ℓ2-
sensitivity ∆ and privacy parameters (ε, δ). We add zero-mean
isotropic Gaussian noise with standard deviation

σ =
∆
√
2 ln(1.25/δ)

ε
. (3)

In practice, we calibrate σ using numerical privacy accountants
(e.g., the analytic Gaussian mechanism and RDP) [18], [19].
This mechanism enables a smooth privacy–utility trade-off
and is widely used in privacy-preserving machine learning,
including DP-SGD [8], which adds Gaussian noise to model
updates to achieve DP.

1) Privacy Amplification by Subsampling: Subsampling is
a standard technique in DP, where a full dataset of size n is
first subsampled to m records without replacement (typically
with m ≪ n) before the privatization mechanism (e.g. the
Gaussian mechanism) is applied. Specifically, if a mechanism

provides (ε, δ)-DP on a dataset of size m, it achieves (ε′, δ′)-
DP on the subsampled dataset, where δ′ = m

n δ and

ε′ = log
(
1 +

m

n
(eε − 1)

)
= O

(m
n
ε
)
. (4)

This result is well-known [20, Theorem 29], with tighter
amplification bounds available for Gaussian mechanisms [19].

D. Private Adaptation of Diffusion Models

Recent advancements in applying DP to diffusion models
have aimed to balance privacy preservation with the high util-
ity of generative outputs. Early work on differentially private
generative models, such as Chen et al.’s [21] investigation of
DP-GANs with model inversion defenses, established founda-
tional principles for protecting generative models from privacy
breaches during training. Dockhorn et al. [11] proposed a
Differentially Private Diffusion Model (DPDM) that enables
privacy-preserving generation of realistic samples, setting a
foundational approach for adapting diffusion processes using
DP-SGD. Another common strategy involves training a model
on a large public dataset, followed by differentially private
fine-tuning on a private dataset [12]. While effective in certain
contexts, this approach raises privacy concerns, particularly
around risks of information leakage during the fine-tuning
phase [22].

In response to these limitations, various adaptation tech-
niques have emerged. Although not specific to diffusion mod-
els, some methods focus on training models on synthetic
data followed by DP-constrained fine-tuning, as in Yu et
al. [23], which demonstrates the feasibility of applying DP in
later adaptation stages. Other approaches explore differentially
private learning of feature representations [24], aiming to
distill private information into a generalized embedding space
while maintaining DP guarantees. Although these adaptations
are not yet implemented for diffusion models, they lay essen-
tial groundwork for developing secure and efficient privacy-
preserving generative models.

III. DIFFERENTIALLY PRIVATE ADAPTATION VIA
TEXTUAL INVERSION

Let x(1), . . . , x(n) represent a target dataset of images whose
characteristics we wish to privately adapt our image generation
towards. Instead of training a single token embedding on the
entire dataset as in regular TI, we train a separate embedding
u(i) on each x(i) to obtain a set of embeddings u(1), . . . , u(n),
as illustrated in Figure 2. We can formalize the encoding
process as

u(i) = argmin
u

Eϵ∼N (0,I),t[∥ϵ− ϵθ(x
(i)
t , yu, t)∥2]. (5)



Fig. 3. Samples of images used in our style adaptation experiments. Left: artwork by @eveismyname (n = 158). Right: Paris 2024 Olympic pictograms
(n = 47), © International Olympic Committee, 2023.

Then, we aggregate the embeddings u(1), . . . , u(n) by cal-
culating their centroid and adding isotropic Gaussian noise.
To ensure bounded sensitivity, we employ a purely directional
token embedding (semantics depend only on direction), such
as CLIP [16], and ℓ2-normalize each embedding vector prior
to aggregation. We can therefore define the resulting centroid
u∗

DP as

u∗
DP =

1

n

n∑
i=1

u(i)

∥u(i)∥
+N (0, σ2I), (6)

where σ is given by (3).
Under this normalization, the ℓ2-sensitivity of u∗

DP is

∆ =
1

n
sup
u,u′

∥∥∥∥ u

∥u∥
− u′

∥u′∥

∥∥∥∥ =
2

n
, (7)

The noisy centroid embedding u∗
DP can then be used to adapt

the downstream image generation process. Similar to regular
TI’s u∗, we can use u∗

DP to represent a new placeholder token
S∗ that can be incorporated into prompts for personalized
image generation. While u∗

DP may not fully solve the TI
optimization problem presented in (2), it provides provable
privacy guarantees, with only a minimal trade-off in accurately
representing the style of the target dataset.

To reduce the amount of noise needed to provide the same
level of DP, we employ subsampling: instead of computing the
centroid over all n embedding vectors, we randomly sample
m ≤ n embedding vectors without replacement and compute
the centroid over only the sampled vectors. Then the standard
privacy amplification by subsampling bounds (such as (4))

can be applied. Formally, we sample Dsub ⊆ {u(1), . . . , u(n)}
where |Dsub| = m, and compute u∗

DP as

u∗
DP =

1

m

∑
u(i)∈Dsub

u(i)

||u(i)||
+N (0, σ2I), (8)

where σ can be computed numerically using (3) with ε′ and
δ′ from Section II-C1.

IV. EXPERIMENTAL RESULTS

A. Datasets

We compiled two datasets to evaluate our style adaptation
method, specifically selecting content unlikely to be recog-
nized by Stable Diffusion v1.5, our base model.

The first dataset consists of 158 artworks by the
artist @eveismyname, who has granted consent for non-
commercial use. This dataset allows us to assess whether mod-
els can capture artistic styles without memorizing individual
works. While some of these artworks may have been publicly
accessible on social media, making incidental inclusion in
Stable Diffusion’s pretraining possible, the artist’s limited
recognition and relatively small portfolio reduce the likelihood
that the model has internalized her unique style. This dataset
serves as a controlled test for privacy-preserving style transfer
on individual artistic collections.

The second dataset contains 47 pictograms from the Paris
2024 Olympics [14], permitted strictly for non-commercial
editorial use [25]. These pictograms were officially released
in February 2023, several months after the release of Stable
Diffusion v1.5, ensuring they were absent from the model’s
pretraining data. This dataset allows us to assess how well



our approach adapts to newly introduced visual styles that the
base model has never encountered.

Both datasets are used to test the ability of our method to
extract and transfer stylistic elements while preserving privacy.
Representative samples are shown in Figure 3.

B. Style Transfer Results

Using both the @eveismyname and Paris 2024 pictograms
dataset, we trained TI [13] embeddings on Stable Diffusion
v1.5 [3] using DPAgg-TI. Our primary goal is to investigate
how DP configurations, specifically the privacy budget ε and
subsampling size m, affect the generated images quality and
privacy resilience. For regular TI, we utilize the default process
to embed the private dataset without any additional noise. For
the DPAgg-TI, we test multiple configurations of m and ε to
analyze the trade-off between image fidelity and privacy.

Figures 4 and 5 present generated images across two key
configurations: (1) regular TI without DP, (2) DPAgg-TI with
DP at different values of m and ε. To ensure reproducibility
and fair comparison across all experimental conditions, we
fixed the random seed for the entire generation pipeline. This
design choice allows us to isolate the effect of our style transfer
method while holding other sources of randomness constant.
As with common practice, we set δ = 1/n.

Images generated without DP closely resemble the unique
stylistic elements of the target dataset. In particular, images
adapted using @eveismyname images displayed crisp details
and nuanced color gradients characteristic of the artist’s work
(Figure 4), while those of Paris 2024 pictograms captured the
logo’s original structure (Figure 5). In contrast, DP configura-
tions introduce a discernible degradation in image quality, with
lower epsilon values and smaller subsampling sizes resulting
in diminished stylistic fidelity.

As a no-learning baseline, we consider the limit ε → 0,
under which u∗

DP should convey zero information about the
target dataset. Since σ ∝ 1/ε is undefined at ε = 0, we
approximate this regime by setting ε = 10−5 ≈ 0, which
yields effectively infinite noise.

As ε → 0, the resulting token embedding u∗
DP gradually

loses its semantic meaning, leading to a loss of stylistic fidelity.
In particular, yu∗

DP
tends towards y (a conditioning vector

independent of the learnable embedding). In our results, this
manifests as a painting of Taylor Swift devoid of the artist-
specific stylistic elements (Figure 4), or a generic icon of a
dragon (with color, as opposed to the black and white design
of the pictograms, Figure 5). To verify this interpretation,
we generated images with the same prompts but without the
special token S∗ and compared them to the ε ≈ 0 generations.
The images were visually identical, confirming that at ε ≈ 0,
the token becomes semantically meaningless and is ignored
by the text encoder.

With this in mind, given a fixed seed, ε can be interpreted
as a drift parameter, representing the progression from the
optimal u∗

DP towards a semantically meaningless embedding,
gradually steering the generated image away from the target
style in exchange for stronger privacy guarantees. We also

observe instances where there is a temporary drop in prompt
fidelity (e.g., m = 16, ε ∈ [0.5, 1] in Figure 4 and intermediate
ε values in Figure 5) which restores as u∗

DP drifts even further
from its optimal value. We hypothesize that this is due to
drifted u∗

DP capturing a different meaning unrelated to the
prompt, before losing any meaning that could be interpreted by
Stable Diffusion’s text encoder, causing u∗

DP to be disregarded
from yu∗

DP
and the prompt fidelity to be restored.

Meanwhile, reducing m also reduces the sensitivity of the
generated image to with respect to ε, as evident by the
observation that, on both datasets at m = 4, (subsampling
rate below 0.1) image generation can tolerate ε as low as
0.5 without significant changes in visual characteristics, and
retaining stylistic elements of the target dataset at ε as low
as 0.1. This strong boost in robustness comes at a small
price of base style capture fidelity. As observed in Figures
4 and 5, we can also treat subsampling as an introduction of
noise. Mathematically, the subsample centroid is an unbiased
estimate of the true centroid, and so the subsampling process
itself defines a distribution centered at the true centroid.
However, the amount of noise introduced by the subsampling
process is limited by the individual image embeddings, as a
subsample centroid can only stray from the true centroid as
much as the biggest outlier in the dataset.

C. User Study

To evaluate our approach under different DP and sub-
sampling configurations, we conducted a user study with
25 participants. The goal was to assess whether DPAgg-TI
preserves perceptual quality while offering privacy guarantees.

1) Study Design and Setup: Participants were shown refer-
ence images from two datasets: the @eveismyname dataset
of private artwork and the Paris 2024 Pictogram dataset. For
each dataset, we used 10 prompts to generate images, resulting
in 20 groups in total. Each group included images produced
under different configurations, including regular TI, DPAgg-
TI with and without DP noise, with and without subsampling
(m = 8), style guidance (see Appendix A), and a no-
adaptation baseline.

2) Survey Procedure: Each participant evaluated two
groups, one randomly selected from each dataset. For each
group, participants were first shown the reference images, then
asked to compare pairs of generated images produced with
different configurations (see Figure 6). For each pair, they
indicated which image better captured the reference style, or
marked the choice as “unsure.”

3) Results and Analysis: Survey results are summarized in
Table I. Participants showed no clear preference between reg-
ular TI and DPAgg-TI, suggesting that our privacy-preserving
approach maintains perceptual quality. As expected, both DP
noise and smaller subsampling size degraded style fidelity,
consistent with the trade-offs inherent in differential privacy.
At ε = 1, preferences were split between configurations with
and without subsampling, although the subsampling variant
was generally favored.



Fig. 4. Images generated by Stable Diffusion v1.5 using the prompt “A painting of Taylor Swift in the style of <@eveismyname>”, with the embedding
<@eveismyname> trained using different values of m and ε.

TABLE I
SURVEY RESULTS.

Regular TI No Adaptation Unsure
@eveismyname 19 4 2
Paris 2024 16 6 3

DPAgg-TI (no DP, no subsampling) No Adaptation Unsure
@eveismyname 16 9 0
Paris 2024 15 4 6

Regular TI DPAgg-TI (no DP, no subsamp.) Unsure
@eveismyname 12 13 0
Paris 2024 9 10 6

Regular TI DPAgg-TI (no DP, subsamp. m = 8) Unsure
@eveismyname 16 6 3
Paris 2024 7 13 5

DPAgg-TI (no DP, no subsampling) DPAgg-TI (no DP, subsamp. m = 8) Unsure
@eveismyname 18 4 3
Paris 2024 10 8 7

DPAgg-TI (ε = 1) no subsampling DPAgg-TI (ε = 1, subsamp. m = 8) Unsure
@eveismyname 14 10 1
Paris 2024 3 16 6

DPAgg-TI (no DP, no subsampling) Style Guidance Unsure
@eveismyname 16 8 1
Paris 2024 20 2 3

DPAgg-TI (ε = 1, subsamp. m = 8) Style Guidance Unsure
@eveismyname 16 8 1
Paris 2024 19 2 4

DPAgg-TI (no DP, subsamp. m = 8) DPAgg-TI (ε = 1, subsamp. m = 8) Unsure
@eveismyname 8 5 12
Paris 2024 15 4 6



Fig. 5. Images generated by Stable Diffusion v1.5 using the prompt “Icon of a dragon in the style of <Paris 2024 Pictograms>”, with the embedding <Paris
2024 Pictograms> trained using different values of m and ε.

Fig. 6. Samples of image sets used in our user study. Participants were asked to compare 2 images at a time.



Overall, the findings highlight that DPAgg-TI achieves per-
ceptual quality comparable to regular TI, while subsampling
serves as an effective mechanism to balance privacy and
stylistic fidelity.

D. Kernel Inception Distance

The Kernel Inception Distance (KID) [26] is a metric for
evaluating generative models by measuring the difference
between the distributions of generated and training images
in an embedding space. To compute KID, images generated
by the model and real training images are passed through an
Inception network [27], and their distributional differences are
estimated. Unlike the more commonly used Fréchet Inception
Distance (FID) [28], KID is an unbiased estimator of the true
divergence between the learned and target distributions [29],
making it more suitable for smaller datasets, as in our case.

We report KID scores for different parameters in Tables
II and III. Our results indicate that DPAgg-TI preserves the
style transfer fidelity of TI while also ensuring differential
privacy. Notably, for @eveismyname (m = 4) at low privacy
budgets, we observe even lower KID values than standard TI,
suggesting enhanced style alignment. Similarly, results for the
Paris 2024 dataset follow a comparable trend, with DPAgg-TI
achieving KID scores similar to TI at low privacy budgets.
However, the overall KID scores for this dataset remain high
within the context of diffusion model style transfer.

Upon inspecting the generated images (Figure 7), we hy-
pothesize that the abstract and out-of-distribution nature of the
Paris 2024 images poses a challenge for the Inception network,
leading to less meaningful feature embeddings. This likely
inflates the measured embedding distances between generated
and reference images, resulting in unusually high KID values.

For KID evaluations, we used prompts similar to those em-
ployed during TI training: “A painting/icon in the style of S∗”.
Consistent with the training image captions, these prompts
do not specify a subject. For each parameter configuration,
we generate 100 images and compute KID by repeatedly
subsampling the larger of the real and generated sets to match
the size of the smaller set 100 times, then averaging the
resulting KID scores.

Fig. 7. Sample of generated images for KID evaluations with respect to the
Paris 2024 dataset.

Fig. 8. Comparing our approach to applying DP-SGD to regular TI using
prompts “an icon of a dragon in the style of the Paris 2024 Olympic
Pictograms” and “a painting of Taylor Swift in the style of @eveismyname”
respectively. Note that our method aggregates individual TI embeddings for
each training image, whereas the baseline trains a single TI embedding over
the entire dataset.

E. Ablation Study: Textual Inversion with DP-SGD

A natural question that arises is how well our approach
compares to the naive method of applying DP-SGD to regular
TI training. We therefore integrated DP-SGD into the TI code-
base using the Opacus library and trained similar embeddings
on the @eveismyname and Paris 2024 datasets. We found
that in most cases, notably the @eveismyname dataset, the
amount of noise required for DP-SGD to achieve a reasonable
value of ε for DP is so high that the resulting embedding
contains negligible information about the training dataset. In
particular, the results for ε = 1 are almost indistinguishable
to ε ≈ 0, as shown in Figure 8. We believe that this is simply
because DP-SGD is not designed to handle such small datasets
in the order of 100 images. Additional results can be found in
Appendix C.

V. DISCUSSION

A. Copyright Protection Implications

Our proposed mechanism can also be interpreted through
the lens of copyright protection. This connection is grounded
in the framework of Near Access-Freeness (NAF) [6], which
evaluates whether a model’s outputs reveal undue influence



TABLE II
KID SCORES OF DPAGG-TI ON @EVEISMYNAME DATASET FOR VARIOUS ε VALUES RANGING FROM ε = 10−5, 0.1, 0.5, 1.0, 5.0 (INCLUDING NO DP)

UNDER DIFFERENT SUBSAMPLING LEVELS (m = 4, 8, 16, 32) AS WELL AS REGULAR TI (CTRL). REPORTED VALUES ARE THE MEAN ± STANDARD
DEVIATION OVER 100 RANDOM SUBSAMPLES.

m No DP ε = 5.0 ε = 1.0 ε = 0.5 ε = 0.1 ε ≈ 0

– 0.0441 ± 0.0027 0.0798 ± 0.0032 0.0526 ± 0.0022 0.0688 ± 0.0020 0.1114 ± 0.0032 0.0654 ± 0.0027
32 0.0753 ± 0.0047 0.0836 ± 0.0042 0.1166 ± 0.0037 0.0295 ± 0.0019 0.0644 ± 0.0021 0.0650 ± 0.0025
16 0.0350 ± 0.0020 0.0381 ± 0.0018 0.0663 ± 0.0025 0.1303 ± 0.0033 0.0438 ± 0.0030 0.0660 ± 0.0029
8 0.0359 ± 0.0018 0.0364 ± 0.0017 0.0366 ± 0.0019 0.0394 ± 0.0025 0.0527 ± 0.0033 0.0654 ± 0.0024
4 0.0246 ± 0.0013 0.0251 ± 0.0016 0.0249 ± 0.0014 0.0256 ± 0.0012 0.0313 ± 0.0017 0.0653 ± 0.0023
ctrl 0.0314 ± 0.0010 – – – – –

TABLE III
KID SCORES OF DPAGG-TI ON PARIS DATASET FOR VARIOUS ε VALUES RANGING FROM ε = 10−5, 0.1, 0.5, 1.0, 5.0 (INCLUDING NO DP) UNDER

DIFFERENT SUBSAMPLING LEVELS (m = 4, 8, 16, 32) AS WELL AS REGULAR TI (CTRL). REPORTED VALUES ARE THE MEAN ± STANDARD DEVIATION
OVER 100 RANDOM SUBSAMPLES.

m No DP ε = 5.0 ε = 1.0 ε = 0.5 ε = 0.1 ε ≈ 0

– 0.1153 ± 0.0055 0.1194 ± 0.0054 0.1306 ± 0.0046 0.1395 ± 0.0057 0.1201 ± 0.0053 0.1274 ± 0.0055
32 0.1222 ± 0.0066 0.1036 ± 0.0065 0.1375 ± 0.0047 0.1311 ± 0.0048 0.1248 ± 0.0060 0.1258 ± 0.0054
16 0.1321 ± 0.0057 0.1411 ± 0.0077 0.1309 ± 0.0061 0.1380 ± 0.0047 0.1359 ± 0.0060 0.1273 ± 0.0057
8 0.1303 ± 0.0084 0.1303 ± 0.0074 0.1112 ± 0.0062 0.1311 ± 0.0064 0.1318 ± 0.0052 0.1267 ± 0.0056
4 0.1158 ± 0.0057 0.1085 ± 0.0056 0.1184 ± 0.0068 0.1194 ± 0.0065 0.1592 ± 0.0065 0.1268 ± 0.0055
ctrl 0.1383 ± 0.0066 – – – – –

from specific data points by comparing them to those from a
safe model trained without access to the same data.

Modern generative models typically produce outputs via
randomized sampling. Leveraging this inherent randomness,
Vyas et al. [6] introduced NAF as a metric to quantify the
similarity between a model’s output and copyrighted content.
The key idea is to compare the output distribution of a poten-
tially infringing model to that of a safe model—one trained
without access to the target content. A canonical example
is the leave-one-out-safe model, trained on the full dataset
excluding x. Since safe(x) lacks access to x, the probability
that it generates content resembling x is expected to be small;
any such resemblance is considered fortuitous.

Definition 2 (Near Access-Freeness [6]). Let C be a set of
copyrighted samples and W a set of generative models. Given
a mapping safe : C → W and a divergence measure ∆, we
say a model w ∈ W is ky-near access-free (or ky-NAF) on
prompt y ∈ Y if for every x ∈ C,

∆
(
Pw(·|y) ∥Psafe(x)(·|y)

)
≤ ky.

If ky = 0, the model is indistinguishable from a safe
model, meaning any resemblance to copyrighted material is
by random chance. More generally, a small ky suggests the
model is unlikely to generate outputs resembling x with higher
probability than a model that has never seen x.

NAF is closely related to concepts in DP. Depending on the
divergence measure ∆, NAF resembles different DP variants—
for example, ε-DP when ∆ = ∆max [10], and (1, ε)-Rényi DP
when ∆ = ∆KL. Translating DP to generative models yields
this definition:

Definition 3 (Differentially Private Generation (DPG)). Let
S and S′ be neighboring datasets. Denote by PS(·|y) the
distribution over outputs generated by a model trained on,
or adapted from, S with algorithm A, where randomness
includes both training and generation. The generation satisfies
ε-Differentially Private Generation (ε-DPG) if for every y ∈ Y ,

∆(PS(·|y) ∥PS′(·|y)) ≤ ε.

Here, neighboring datasets differ by a single data point (or
privacy unit). If the training process is ε-DP, then the outputs
naturally satisfy ε-DPG via the data processing inequality. One
benefit of DPG is the flexibility to add noise during generation
rather than training, potentially improving the utility–privacy
tradeoff. However, there are notable distinctions: ε-DP of-
fers protection under arbitrary post-processing and multiple
outputs, whereas ε-DPG only guarantees privacy for single
outputs. Also, under DP, the trained model can be released,
but under DPG, only the outputs are safe to share. Elkin-Koren
et al. [30] highlight further differences: NAF is one-sided—
comparing a model to a fixed safe reference—whereas DPG is
symmetric. This asymmetry in NAF can enable better utility.
Additionally, NAF allows more flexibility in choosing the safe
model, which can be exploited in algorithm design.

Since DPAgg-TI satisfies ε-DP, it also satisfies ε-NAF under
the leave-one-out-safe model. Within the NAF framework,
this means the adapted model behaves similarly to one that
never saw the private images. Importantly, this guarantee is
meaningful only within NAF; it does not imply broader legal
immunity or empirical indistinguishability from the original
content. However, it allows us to argue that any close resem-



blance between outputs and private training data is no more
likely than would be expected from a model with no access
to that data.

Finally, the goal of DPAgg-TI is to adapt to the style of
private image sets, not their precise content. This distinction
matters:pure style imitation (without reproducing protectable
expression or “substantive elements”) is often argued to be
non-infringing in many creative contexts, though the legal
status is jurisdiction- and fact-dependent; particularly in artis-
tic and creative contexts. As discussed in Elkin-Koren et al.
[30] and legal analyses such as Carlini et al. [5], generating
new content in the style of a work, without reproducing its
substantive elements, is generally not considered copyright
infringement. Therefore, the use of DPAgg-TI to learn and
reproduce stylistic attributes does not contradict the spirit or
intent of the NAF framework. Instead, it offers a promising
direction for responsibly fine-tuning generative models on
private or copyrighted sources while respecting both privacy
and intellectual property boundaries.

Remark 1 (Scope of Protection and Artist-Level Extension).
We provide record-level DP: it limits leakage or reconstruction
of any individual private image, not an artist’s entire style.
Consequently, it yields a corresponding NAF-style guarantee
at the per-image level (under the chosen safe reference). This
interpretation should be understood strictly within NAF and
does not constitute a general copyright compliance claim. The
DP guarantee continues to apply under targeted prompts: con-
ditioning on detailed descriptions can increase the likelihood
of reproducing a specific private work by at most an eε factor
(up to δ). Artist-level (user-level) DP is conceptually possible
by treating each artist as one unit and privately aggregating
artist-level embeddings (e.g., via a DP mean mechanism), but
typically requires stronger noise and may reduce utility; we
leave a full exploration to future work.

B. Limitations
DPAgg-TI is designed for the low-data, strong-privacy

regime, where the number of private images is small (n ≈ 100)
and per-record protection with ε < 5 matters. For large
datasets with moderate subsampling, DP-SGD on the full
model may become more efficient and could provide better
utility. We explicitly position our method for scenarios where
DP-SGD is known to struggle: strong privacy guarantees with
limited training data.

We acknowledge that in moderate privacy regimes (5 ≤ ε ≤
10) with larger batch sizes and careful tuning, DP-SGD with
parameter-efficient fine-tuning methods might perform better
than our approach. However, in our experiments, applying
DP-SGD to regular TI even at ε = 20 with carefully tuned
hyperparameters (learning rate, batch size, scheduler) still
required prohibitively high noise levels to satisfy the privacy
accountant, preventing meaningful learning. Moreover, DP-
SGD typically involves multiple training iterations, so the
effective noise further accumulates due to composition across
epochs, making convergence extremely difficult in the strong-
privacy regime (ε < 5) with approximately 100 images.

VI. CONCLUSION

We presented a differentially private adaptation method for
diffusion models based on Textual Inversion, enabling privacy-
preserving style transfer without the need for full model
fine-tuning. By learning per-image embeddings and aggre-
gating them with calibrated noise, our method, DPAgg-TI,
achieves strong formal privacy guarantees while maintaining
high output fidelity. Experiments on private artwork and Paris
2024 pictograms show that DPAgg-TI consistently outper-
forms DP-SGD, which fails to produce meaningful results
under comparable privacy budgets. These results highlight the
effectiveness of embedding-level adaptation as an efficient and
scalable alternative to traditional gradient-based approaches,
especially in low-data regimes. Unlike DP-SGD, which in-
troduces significant computational overhead and utility degra-
dation, DPAgg-TI is lightweight, modular, and compatible
with existing diffusion backbones. Our findings suggest that
embedding-centric approaches offer a promising direction for
privacy-aware personalization, and motivate further research
into cross-modal extensions, improved aggregation techniques,
and integration with broader privacy-preserving frameworks.

ETHICAL STATEMENT

The use of images without owner consent raises significant
ethical concerns, particularly regarding the exploitation of
intellectual property. This work introduces a method for visual
generative models to adapt to new styles and classes while
ensuring privacy and copyright protection for data owners. By
providing a framework for privacy-preserving adaptation, this
technology aims to respect intellectual property and address
ethical challenges in generative AI. While it does not eliminate
the need for consent from data owners, we hope that it
represents a step toward balancing innovation with ethical con-
siderations in AI development. Beyond creative applications,
the proposed method has broader potential uses, including
synthetic data generation, privacy-preserving personalization,
and fine-tuning diffusion models for private or domain-specific
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APPENDIX A
DIFFERENTIALLY PRIVATE ADAPTATION VIA STYLE GUIDANCE

A. Background: Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) sampling [15] uses the predicted noise ϵθ(xt, y, t) and a noise schedule
represented by an array of scalars {αt}Tt=1 to first predict a clean image x̂0, then makes a small step in the direction of x̂0 to
obtain xt−1. The reverse diffusion process for DDIM sampling can be formalized as

x̂0 =
xt −

√
1− αtϵθ(xt, y, t)√

αt
(9)

xt−1 =
√
αt−1x̂0 +

√
1− αt−1ϵθ(xt, y, t). (10)

B. Implementation

We extend our approach to style guidance (SG) by leveraging the framework of Universal Guidance [31]. Specifically, we
focus on CLIP-based style guidance, which optimizes the similarity between the CLIP embeddings of a target image and the
generated image.

We encode each target image x(i) as u(i) via a CLIP image encoder, then aggregate the embeddings u(1), . . . , u(n) into u∗
DP

using (6) or (8), depending on whether subsampling is applied. The aggregated embedding u∗
DP is then incorporated into the

reverse diffusion process as a style guide.
Let xc denote the target style image, xt the noisy image at step t, and E(·) the CLIP image encoder. The forward guidance

process is defined as

ϵ̂θ(xt, y, t) = ϵθ(xt, y, t) + w
√
1− αt∇xt

ℓcos(E(xt), E(x̂0)), (11)

where w is a guidance weight and ℓcos is the negative cosine similarity loss. For a detailed description of Universal Guidance,
including the backward guidance process and per-step self-recurrence, we refer the reader to the original paper. The reverse
diffusion step replaces ϵθ(xt, y, t) with ϵ̂θ(xt, y, t), generating an image x0 that aligns with the text conditioning y while
incorporating the stylistic characteristics of xc.

To integrate differential privacy, we encode each target image x(i) into u(i) = E(x(i)) and aggregate these embeddings into
u∗

DP using the centroid method. The aggregated u∗
DP guides the reverse diffusion process:

ϵ̂θ(xt, y, t) = ϵθ(xt, y, t) + w
√
1− αt∇xt

ℓcos(u
∗
DP, E(x̂0)). (12)

This ensures privacy-preserving style transfer while maintaining high stylistic fidelity.

C. Style Transfer Results

Fig. 9. Attempts of using universal guidance to generate drawings of Taylor Swift and icons of the Eiffel Tower in the styles of @eveismyname and Paris
2024 Pictograms respectively. Here, we apply no subsampling or DP-noise.

We apply our SG-based approach to both datasets. While it provides privacy protection by obfuscating embedding details,
the resulting images captured only generalized stylistic elements and lack the detailed fidelity and coherence achieved with
the TI-based method. As shown in Figure 9, this highlights the superiority of TI in balancing privacy and high-quality image
generation.

The reduced effectiveness of SG for style transfer may stem from its sensitivity to hyperparameters such as the guidance
weight w, leading to instability. Although Bansal et al. [31] proposed remedies, namely backward guidance and per-step self-
recurrence, these proved insufficient for our application. Additionally, the CLIP embeddings may not retain enough stylistic
detail after the aggregation.



D. Ablation

To better understand the limited effectiveness of style guidance in our experiments, despite its success in Bansal et al.
[31], we applied our approach to a dataset of 143 paintings from Van Gogh’s Saint-Paul Asylum, Saint-Rémy collection [32]
(Figure 10). Unlike the @eveismyname and Paris 2024 datasets, it is highly likely that Stable Diffusion has been trained
on these images. Additionally, Bansal et al. [31] demonstrated successful adaptation towards the style of Van Gogh’s Starry
Night as a single reference image, making this dataset a reasonable interpolation between their successful results and our more
limited findings.

Without DP noise or subsampling, we obtained reasonable style transfer results, as shown in Figure 11. This suggests that
style guidance struggles when applied to previously unseen target styles, and that its effectiveness may depend on prior exposure
within the pre-training data.

Fig. 10. Sample of paintings by Van Gogh used to generate style guidance embeddings.

Fig. 11. Images generated by Stable Diffusion v1.5 with style guidance towards Van Gogh’s Saint-Paul Asylum, Saint-Rémy collection using prompts “A
painting of Taylor Swift (left) / the Eiffel Tower (center) / a tree (right)”.

APPENDIX B
COMPUTATIONAL COST COMPARISONS

Direct comparisons of computational cost across methods are challenging due to differing training paradigms (per-image
optimization vs. dataset-level training), optimization procedures, and privacy accounting. Nonetheless, to provide a concrete
sense of scale, we report representative costs measured using Stable Diffusion v1.5 on a single NVIDIA A100 GPU (Tables IV
and V). For each method, we tuned the number of optimization steps to reach its best utility under the target privacy budget.

a) Sequential vs. batched execution: The per-image runtime reported in Table IV corresponds to a sequential imple-
mentation that optimizes each textual-inversion embedding independently. In practice, we can optimize multiple embeddings
jointly by batching several images at once (and optionally subsampling the private set per update), which reduces the effective
wall-clock cost and avoids the naive linear scaling implied by “minutes per image × n.”

TABLE IV
TRAINING COST COMPARISON ACROSS METHODS. OVERHEAD FROM DP-SGD IS RELATIVELY MODEST DUE TO THE LOW-DIMENSIONAL EMBEDDING

BEING OPTIMIZED. N/A FOR SG MEANS NOTHING IS TRAINED ASIDE FROM THE BASE MODEL.

Method Steps Batch Size Time Memory Usage
TI (no DP) 10,000 (for 150 images) 1 25 min 7 GB

8 2.5 hours 20 GB
TI (DP-SGD) 30,000 (for 150 images) 1 80 min 7 GB

8 7 hours 20 GB
DPAgg-TI 2,000 per image N/A ∼5 min/image 7 GB
SG N/A N/A N/A N/A

b) When DP-SGD can be faster: DP-SGD amortizes computation across the dataset and can be faster wall-clock-wise
for larger n and/or moderate privacy budgets. In contrast, our method is designed for low-data personalization with strong
per-record guarantees, and it offers a practical advantage in dynamic settings: it supports incremental updates to the private set
(e.g. adding or removing images) without retraining a large set of model parameters, whereas DP-SGD-style training typically
requires rerunning optimization to reflect such changes. We view these approaches as complementary, targeting different
operating regimes.



TABLE V
INFERENCE COST COMPARISON ACROSS METHODS.

Method Steps Batch Size Time Memory Usage
TI (no DP, DP-SGD, DPAgg-TI) 50 1 1–2 sec 4 GB

100 1 1–2 min 58 GB
SG (no DP, DPAgg-SG) 500 1 ∼30 min 17 GB

APPENDIX C
ADDITIONAL STYLE TRANSFER AND ABLATION RESULTS

Fig. 12. Images generated by Stable Diffusion v1.5 using the prompt “A painting of Taylor Swift in the style of <@eveismyname>”, with the embedding
<@eveismyname> trained using DPAgg-TI (with different subsample sizes m) and TI with DP-SGD using different values of ε.



Fig. 13. Images generated by Stable Diffusion v1.5 using the prompt “An icon of the Eiffel Tower in the style of <Paris 2024 Pictograms>”, with the
embedding <Paris 2024 Pictograms> trained using DPAgg-TI (with different subsample sizes m) and TI with DP-SGD using different values of ε.



Fig. 14. Images generated by Stable Diffusion v1.5 using the prompt “An icon of a dragon in the style of <Paris 2024 Pictograms>”, with the embedding
<Paris 2024 Pictograms> trained using DPAgg-TI (with different subsample sizes m) and TI with DP-SGD using different values of ε.


